Fibonacci Number Program
Implementation of the algorithm in all programming languages.
by Scriptol.com
Mathematician Leonardo Fibonacci posed the following problem in his treatise Liber Abaci:
"How many pairs of rabbits will be produced in a year, beginning with a single pair, if in every month each pair bears a new pair which becomes productive from the second month on?"
The answer is given below by algorithms in the most popular and new programming languages...
Ada Algol Asp Awk Basic Boo C C++ C# Caml Cobol CoffeeScript Dart Eiffel Erlang F# Forth Fortran Go Haskell Java JavaScript Julia Lisp Lua Oberon Objective C OCaml Oz Pascal Perl PHP Prolog Python Rebol Rexx Ruby Rust Scala Scheme Scriptol Smalltalk Swift Tcl TypeScript WebAssembly
Ada
Recursivefunction fib(n : integer) return integer is
begin
if n < 2 then
return n;
else
return fib(n-1) + fib(n-2);
end if;
end fib;
Iterative
function fib(n : integer) return integer is
first : integer := 0;
second : integer := 1;
tmp : integer;
begin
for i in 1..n loop
tmp := first + second;
first := second;
second := tmp;
end loop;
return first;
end fib;
Algol 68
PROC print fib = (INT n) VOID :
BEGIN
INT a := 0;
INT b := 1;
FOR i TO n DO
print((whole(i, 0), " => ", whole(b, 0), new line));
INT c = a + b;
a := b;
b := c
OD
END;
print fib(10)
Asp
Recursivefunction fibo(byval i)
if (i = 0 or i = 1) then
fibo = i
else
fibo = fibo(i - 1) + fibo(i - 2)
end If
end function
<% for num = 1 to n
= fibo(num)
%>
Iterative
<table>
<%
dim a = 1
dim b = 1
dim num
dim d
for num = 1 to 12
d = a + b
a = b - 1
b = d
response.Write("<tr><td> " & num & "</td><td>" & a & "</td></tr>")
next
%>
</table>
Awk
function fib(n)
{
if(n < 2) return(n);
return(fib(n-2) + fib(n-1));
}
BEGIN
{
printf("%d\n", fib(10));
exit;
}
Basic
x = 1
y = 1
n = 100
FOR x = 1 to n
z = x + y
x = y
y = z
PRINT z + 1
NEXT x
C
Recursiveint fib(int n){
if (n < 2)
return n;
else
return fib(n-1) + fib(n-2);
}
printf("%d\n", fib(10));
Iterative
int fib(int n) {
int first = 0, second = 1;
int tmp;
while (n--) {
tmp = first+second;
first = second;
second = tmp;
}
return first;
}
C++
Recursiveint fib(int n) {
if (n < 2)
return n;
else
return fib(n-1) + fib(n-2);
}
cout << fib(10) << endl;
Iterative
int fibonacci(int n){
int u = 0;
int v = 1;
int i, t;
for(i = 2; i <= n; i++) {
t = u + v;
u = v;
v = t;
}
return v;
}
C#
Recursiveusing System;
class App
{
public static int fibo(int n)
{
return (n < 2) ? n : fibo(n-2) + fibo(n-1);
}
public static int Main(String[] args)
{
int limit;
int f;
limit = System.Convert.ToInt32(args[0]);
if(limit < 1) limit = 1;
f = fibo(limit);
Console.WriteLine(f.ToString()+"\n");
return(0);
}
}
Iterative
public class Fibonacci
{
public static void Main()
{
int oldnum = 1;
int currnum = 1;
int nextNumber;
System.Console.Write(currnum + " ");
while (currnum < 50)
{
System.Console.Write(currnum + " ");
nextNumber = currnum + oldnum;
oldnum = currnum;
currnum = nextNumber;
}
}
}
Cobol
IDENTIFICATION DIVISION.
PROGRAM-ID. FIBONACCI.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 N PIC 9(18).
77 N1 PIC Z(18).
77 M PIC 9(18) VALUE 1.
77 O PIC 9(18).
77 I PIC 9(4) VALUE 1.
77 Q PIC X.
PROCEDURE DIVISION.
PARA-A.
DISPLAY ( 1 , 1 ) ERASE.
DISPLAY ( 2 , 1 ) "FIBONACCI NUMBERS FROM 1 TO 100 ARE:".
MOVE 0 TO N.
DISPLAY " ".
DISPLAY 0.
DISPLAY 1.
MOVE 0 TO O.
PARA-B.
COMPUTE N = O + M.
MOVE N TO N1.
MOVE M TO O.
MOVE N TO M.
DISPLAY N1.
ADD 1 TO I.
IF I = 21
DISPLAY "PRESS TAB KEY TO VIEW NEXT PAGE."
ACCEPT Q.
IF I = 41
DISPLAY "PRESS TAB KEY TO VIEW NEXT PAGE."
ACCEPT Q.
IF I = 61
DISPLAY "PRESS TAB KEY TO VIEW NEXT PAGE."
ACCEPT Q.
IF I = 81
DISPLAY "PRESS TAB KEY TO VIEW NEXT PAGE."
ACCEPT Q
IF I = 99
GO TO STOP-PARA
ELSE
GO TO PARA-B.
STOP-PARA.
DISPLAY " ".
STOP RUN.
CoffeeScript
fibo = (n) ->
if n is 0 or n is 1 return n
fibo(n-1)+ fibo(n-2)
for i in [1..16]
console.log fibo(i)
Dart
int fibo(int i) {
if (i < 2) return i;
return fibo(i - 2) + fibo(i - 1);
}
Eiffel
Recursiveclass FIBONACCI
feature
fib (k: INTEGER): INTEGER is
-- Fibonnaci numbers
require
pre_fib: k >= 0 do
if k = 0 then
Result := 0
else
if k = 1 then
Result := 1
else
Result := fib (k-2) + fib (k-1) end
end;
-- fib
Iterative
fibiter (k: INTEGER): INTEGER is
-- Fibonacci
require
pre_fib: k > 0
local
j, p, c, n: INTEGER
do from
p := 0;
c := 1;
j := 1
until
j = k
loop
n := p + c;
p := c;
c := n;
j := j + 1
end;
Result := c
end;
-- fib1
Erlang
-module(fibo).
-export([main/1]).
main() -> main(['1']).
main([Arg]) ->
Num = list_to_integer(atom_to_list(Arg)),
io:fwrite("~w\n", [fibo(Num)]),
halt(0).
fibo(N) when N < 2 -> 1;
fibo(N) -> fibo(N-2) + fibo(N-1).
F# (F Sharp)
let rec fibo x =
match x with
0 -> 1
| 1 -> 1
| n -> fibo(x - 1) + fibo(x - 2);;
fibo 10;;
Forth
\ read NUM from last command line argument
0. argc @ 1- arg >number 2drop drop constant NUM
\ compute fibonacci numbers
: fib Récursif
dup 2 <
if
drop 1
else
dup
2 - fib
swap
1 - fib
+
then ;
NUM fib 1 u.r cr
bye
A very short version:
\ Nombres de Fibonacci par Bill Spight
: FIBO ( n -- n1 n0) \ n >= 0, n0 = Fibo(n), n1 = Fibo(n-1)
DUP 0= IF 1 SWAP ELSE 1- RECURSE TUCK + ENDIF ;
Fortran
PROGRAM F2A
I=35; K=I
CALL F(I)
PRINT *,K,'th Fibonacci number is',I
STOP
END PROGRAM
C
C Subroutine F(I) calculates the I'th Fibonacci number
C
SUBROUTINE F(I)
DIMENSION A(I+1)
A(1)=1; A(2)=1
DO1J=3,I+1
A(J)=A(J-1)+A(J-2)
1 CONTINUE
I=A(I+1)
RETURN
END SUBROUTINE
Go
package main
import(
"fmt"
"math"
)
func fibo(n int) int {
if n < 2 {
return n
}
return fibo(n-2) + fibo(n-1)
}
Haskell
module Main where
import System.Environment
fibo = 1 : 1 : zipWith (+) fibo (tail fibo)
main = do
args <- getArgs
print (fibo !! (read(args!!0)-1))
Java
public class fibo
{
public static void main(String args[])
{
int N = Integer.parseInt(args[0]);
System.out.println(fib(N));
}
public static int fib(int n)
{
if (n < 2) return(n);
return( fib(n-2) + fib(n-1) );
}
}
JavaScript
function fibo(n)
{
if (n < 2) return n
return fibo(n-2) + fibo(n-1)
}
for(var i = 1; i < x ; i++)
{
document.write(i + " = " + fibo(i) + "<br>")
}
Julia
Recursive
fibo(n) = n < 2 ? n : fibo(n-1) + fibo(n-2)
Iterative
function fibo(n)
x,y = (0,1)
for i = 1:n
x,y = (y, x+y)
end
return x
end
for n=1:10
println(fibo(n))
end
Lisp
(defun fibo (x)
"
Calcule le nombre de fibonacci pour x
"
(if (<= x 2)
1
(+ (fibo (- x 2))(fibo (1- x)))))
(loop for i from 1 to x do
(print (fibo i)))
Lua
function fibo(n)
if (n < 2) then return(1) end
return( fibo(n-2) + fibo(n-1) )
end
N = tonumber((arg and arg[1])) or 1
write(fibo(N), "\n")
Oberon
MODULE fibonacci;
(* n premiers nombres de Fibonacci *)
CONST n=151;
VAR Fibs:
ARRAY n+1 OF INTEGER;
i,j : INTEGER;
BEGIN
j:=0;
Fibs[0]:=0;
Fibs[1]:=1;
i:=2;
WHILE i <= n DO
Fibs[i]:= Fibs[i-2] + Fibs[i-1];
i:=i+1;
END;
i:=0;
WHILE i <= n DO
Write(Fibs[i]);
i:=i+1;
END;
END fibonacci.
Objective C
int i, a = 1, b = 0;
int top = 50;
for(i = 2; i < top; i++) {
fibo = a + b;
a = b;
b = fibo;
printf("fibo(%d) %d\n", i, fibo);
}
Ocaml
let rec fib n =
if n < 2 then 1
else fib (n - 2) + fib (n - 1)
let _ =
let n =
try int_of_string Sys.argv.(1)
with Invalid_argument _ -> 1 in
Printf.printf "%d\n" (fib n)
Oz
functor
import System Application
define
fun {Fib N}
case N
of 0 then 1
[] 1 then 1
else {Fib N-2} + {Fib N-1} end
end
in
local A in
[A] = {Application.getArgs plain}
{System.printInfo {Fib {String.toInt A}}}
end
{Application.exit 0}
end
Pascal
Recursive
program fibo;
var
result : longint;
num,i, error: integer;
strnum: string;
function fib(n : integer) : longint;
begin
if n <= 2 then fib := 1
else fib := fib(n-2) + fib(n-1);
end;
begin
if ParamCount = 0 then
begin
writeln('Enter integer:');
readln(strnum);
val(strnum,num,error);
end else
begin
val (ParamStr(1), num, error);
end;
for i := 1 to num do
begin
result:= fib(i);
writeln(i, ' : ', result);
end;
end.
Source code
Perl
Iterative using bigint#! /usr/bin/perl
use bigint;
my ($a, $b) = (0, 1);
for (;;)
{
print "$a\n";
($a, $b) = ($b, $a+$b);
}
Recursive
sub fibo;
sub fibo {$_ [0] < 2 ? $_ [0] : fibo ($_ [0] - 1) + fibo ($_ [0] - 2)}
Iterative
sub fibo
{
my ($n, $a, $b) = (shift, 0, 1);
($a, $b) = ($b, $a + $b) while $n-- > 0;
$a;
}
PHP
Recursive
<?php
function fibo($n)
{
return(($n < 2) ? 1 : fibo($n - 1) + fibo($n - 2));
}
$n = ($argc == 2) ? $argv[1] : 1;
$r = fibo($n);
print "$r\n";
?>
Iterative
function fibonacci($length)
{
for( $l = array(1,1), $i = 2, $x = 0; $i < $length; $i++ )
{
$l[] = $l[$x++] + $l[$x];
}
return $l;
}
for{ $x=0; $x< $fibmax; $x++) echo "fib(" , $x , ") ", fibonacci($x), "\n"
Prolog
Recursive
fibo(N, 1) :-, N<2, !.
fibo(N, R) :-
N1 is N-1, N2 is N-2,
fibo(N1, R1),fibo(N2, R2),
R is R1 + R2.
Python
Recursive
import sys
def fib(n):
if n < 2:
return n
else:
return fib(n - 1) + fib(n - 2)
def main():
limit = int(sys.argv[1])
print(fib(limit))
main()
With generator
def fib():
a, b = 0, 1
while True:
yield a
a, b = b, a + b
Rebol
Fib: func [N]
[
return either N < 2 [ n ] [ (Fib N - 2) + (Fib N - 1) ]
]
NUM: to-integer to-string system/script/args
NUM: either NUM < 1 [ 1 ] [ NUM ]
R: Fib NUM
write %output.rebol rejoin [ R ]
Rexx
parse arg n
If n < 1 Then Do
n = 1
End
R = fib(N)
say R
exit
fib:
Procedure
parse arg n
if n < 2 return n
return fib(n-2) + fib(n-1)
Ruby
Recursivedef fibo(n)
return n if n <= 1
return fibo(n-1) + fibo(n-2)
end
puts fibo(16)
Iterative
def fib(num)
i, j = 0, 1
while i <= num
yield i
i, j = j, i + j
end
end
fib(10) {|i| puts i}
Rust
fn fibo(n: int) -> int {
if (n <= 1) {
ret n;
}
else {
ret fibo(n - 1) + fibo(n - 2);
}
}
print(fmt!("%d ", fibo(10)));
Scala
Recursive
object Fibonacci with Application
{
def fibo(n: Int): Int =
if (n < 2) n
else fibo(n - 1) + fibo(n - 2);
Console.println("fib("+ x +") = " + fib(x));
};
Iterative
object Fibonacci with Application
{
def fibo(n: Int): Int =
if (n < 2) 1
else
{
def iter(x: Int, prev: Int, result: Int): Int =
if (x > n) result
else iter(x + 1, result, prev + result);
iter(3, 1, 2)
};
Console.println("fib("+ x +") = " + fib(x));
};
Scheme
Recursive(define fibo
(lambda (x)
(if (< x 2)
x
(+ (fibo (- x 1)) (fibo (- x 2))))))
Iterative
(define (fibo x)
(define (fibo-iter x a b)
(if (= x 0)
a
(fibo-iter (- x 1) b (+ a b))))
(fibo-iter x 0 1))
Display
(define (fibo-run a b)
(display a)
(newline)
(fibo-run b (+ a b)))
(define fibo-run-all (fibo-run 0 1)))
Scriptol
Recursive# Recursive Fibonacci function
constant int fmax = 16
int fib(int n)
if n <= 1 return n
return fib(n - 1) + fib(n - 2)
for int i in 1..fmax // loop in a range
print "fib($i)= " , fib(i)
/for
Iterative
int fibonacci(int n)
int u = 0
int v = 1
int t
for int i in 2 .. n
t = u + v
u = v
v = t
/for
return v
for int x in 1..fibmax echo "fib(" , x , ") ", fibonacci(x), "\n"
Smalltalk
^self <= 2
ifTrue: [1]
ifFalse: [(self - 1) fibonacci + (self - 2) fibonacci]
Swift
func fib(n: Int) -> Int {
if n <= 1 {
return n
}
return (fib(n - 1) + fib(n - 2))
}
for x in 10 {
print(fib(x))
}
Tcl
proc fib {n} {
if {$n < 2} {
return $n
} else {
return [expr {[fib [expr {$n-2}]] + [fib [expr {$n-1}]]}]
}
}
set N [lindex $argv 0]
if {$N < 1} { set N 1 }
puts [fib $N]
TypeScript
function fibo(n : number) : number {
if (n < 2) return n
return fibo(n-2) + fibo(n-1)
}
WebAssembly
(module
(export "fib" (func $fib))
(func $fib (param $n i32) (result i32)
(if (i32.lt_s (get_local $n)(i32.const 2))
(return (i32.const 1)
)
)
(return (i32.add
(call $fib (i32.sub (get_local $n)(i32.const 2)))
(call $fib (i32.sub (get_local $n)(i32.const 1)))
)
)
)
)
See also
- Hello world programs in any programming languages
- Sieve of Eratosthenes in any programming languages.
- History and evolution or computer languages

